Vertical structures
Within the context of the built environment , the term ‘structure’ refers to anything that is constructed or built from different interrelated parts with a fixed location on the ground. This includes complete items such as buildings, and parts of items, such as arches. It can also be used to refer to a body of connected parts that is designed to bear loads, but is not intended to be occupied by people. Engineers sometimes refer to these as 'non-building' structures.
Buildings and other structures that are tall and rise upward might be known as vertical structures. This type of construction is becoming more common in urban areas where limited land space is available and there is a growing demand for high-rise buildings. Vertical structures have unique design and engineering requirements that must be met to ensure their stability, safety, and functionality.
A skyscraper is an example of a vertical structure, as is a high-rise building. Typically a high-rise building is considered to be more than 7-10 storeys or 23-30 m.
For more information see: High-rise building.
Types of structure used to construct vertical structures can include:
- Steel frame structures - This type of vertical structure is made of steel beams and columns that are welded or bolted together to form a framework. The steel frame provides stability and support for the building, and is often used for high-rise buildings, skyscrapers, and other commercial buildings.
- Concrete frame structures - This type of vertical structure is made of reinforced concrete, with beams and columns that are generally cast in place to form a solid framework. Concrete frame structures are often used for high-rise buildings, commercial buildings, and residential buildings.
- Hybrid structures - A hybrid structure is a combination of two or more types of vertical structures, such as steel and concrete, to create a framework that provides the best combination of strength, stability, and cost-effectiveness.
Advantages of vertical structures
- Space efficiency - Vertical structures can be efficient as they use of limited land space, providing more floor area per square foot of land than traditional, single-story buildings. This is particularly important in expensive city centre locations, where accommodation and views can be maximised on relatively small sites.
- Cost effective - Vertical structures can be less expensive to build than traditional, single-story buildings, as the cost of the foundation, roof, and so on is shared among multiple floors.
- Energy efficiency - Vertical structures can be more energy-efficient than traditional, single-story buildings, as they can be designed with efficient HVAC systems, and natural light can be maximised through the use of windows and skylights.
Disadvantages of vertical structures
- Cost of construction - The cost of construction can be high, as the building must be designed and engineered to meet strict structural and safety requirements, and the size of lifts, structure, services and so on can reduce the useable floor area.
- Maintenance costs - Vertical structures can be expensive to maintain, as lifts, cladding, HVAC systems, and other building systems must be regularly inspected and maintained to ensure their continued operation.
- Evacuation challenges - In the event of an emergency, evacuating a tall building can be a challenge, requiring well-designed emergency evacuation plans and procedures.
Vertical structures play a crucial role in the construction industry, providing an efficient use of limited land space. However, they also present challenges such as high costs of construction and maintenance, and the need for well-designed emergency evacuation plans. It is essential that these structures be designed and engineered by qualified specialist professionals to ensure their stability, safety, and functionality.
[edit] Related articles on Designing Buildings
Featured articles and news
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).
Ebenezer Howard: inventor of the garden city. Book review.
The Grenfell Tower fire, eight years on
A time to pause and reflect as Dubai tower block fire reported just before anniversary.
Airtightness Topic Guide BSRIA TG 27/2025
Explaining the basics of airtightness, what it is, why it's important, when it's required and how it's carried out.
Construction contract awards hit lowest point of 2025
Plummeting for second consecutive month, intensifying concerns for housing and infrastructure goals.
Understanding Mental Health in the Built Environment 2025
Examining the state of mental health in construction, shedding light on levels of stress, anxiety and depression.